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ABSTRACT

Let m items be put on test at the outset, and suppose an item is not

replaced upon failure. Ms~ae an exponential failure distribution

F0 
(t) — 1 — ezp(—t/e) . A time truncated sequential procedure for testing

H0: 0 � 00 versus 15: 0 ~~~ is developed . This procedure allows a quick

rejection of H0 when H1 is true , but provides an accurate interval estimate

of 0 when H0 is accepted after the teat has been established .

MIS Subject Classification: Primary 62L10

Key Words and Phrases: Time truncation; Gaussian process; Wiener measure;
Weak convergence; Stopping rule; Confidence interval ;
Average sampling time.
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1. INTRODUCTION

In the quality control of industrial production, it is a coemon practice

F - to test hypotheses to make a decision about acceptance or rejection of a pro-

duction batch. Generally, a sequential testing procedure requires less data

to reach a decision than a fixed sample or f ixed t ime testing procedure. Also,

in many situations, the experimenter may want to obtain a point or an interval

estimate of some parameter after a test of hypothesis has been established.( (for example, see Siegmund (1977 ,1978)).

In this paper, we will consider a coemonly uaed life testing procedure

in industrial settings. Let a items be independently put on test at the out-

set, and when an item fails, it is not replaced. Suppose that the failure

time is exponentially distributed with distribution function F0(t) —

l—exp(—t/0), t�O . The hypotheses which are to be tested are

(1.1) H0: 0�O ~ versus 15: 0 ~
0l) where e1< 00.

We asst e that for certain reasons this life test must be terminated at

time t0 if not all of the items have failed by t0
. (This type of censor-

ship is often called Type I censoring.) The time t
0 
can be preassigned

or determined by the specified probabilities a and B for testing (1.1).

The maximum likelihood estimator of 0 under the above type of censor-

ship with censoring time t (�t
0
) was given by Bartlett (1933) as

N (t)

~ U 1 + (rn—N (t))t

a N (t)

where N (t) denotes the number of failures at or before time t and the

_  _  _
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Ui
’s denote the observed failure t imes in increasing order. For convenience,

let us define 0 (t) • if N (t) • 0. Bartholomew (1963) obtained the con—

ditional probability that 0 (t) � c given Na(t) 0, when c )‘ 0. ‘Yang and

Sirvanci (1977) showed that the estimator 0~(t) is consisçent and when

properly standardized, is asymptotically normal for each fixed t ~ t0.

Recently, Spurn er and Wei (1979) have used e
~
(to) as the test statistic

for testing (1.1) and demonstrated certain advantages over Epstein’s procedure

(1954) and th. pure sequential probability ratio test given in Chosh (1970,

pp. 193—96). Note that Spurn er and Wet’s test is a test based on the fixed

length of time t
0
.

In this article, a one—sided sequential test procedure based on the

random function 0~ is presented for testing (1.1). This procedure allows
•a quick rejection of H0 when H1 is true, but provides an accurate interval

estimator of 0 when H0 is accepted . Siegmund (1977) studied the same problem

for different experimental settings. In Section 2, we prove that the

standardized process converges in distribution to a Gaussian process as

a -. ~~~. The large saapl. approximation of the power function and the average

sampling time CAST) are presented in Sections 3 and 4 , respectively. An

interval estimate of B after testing is given in Section 5. A simple

example is provided for illustration purposes in Section 6.

2. LARGE SA)WLE APPROXIMATION OF BY A
GAUSSIAN PROCESS

To test the hypothesis (1.1), vs define the following stopping rule:

Let T be the smallest value of t such that 0 (t)  ~ C . Given t0, stopa a
testing at ain (t0,T) and reject H0 if and only if T � to.

- - 
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I
We now prove that the distribut ion of the standardised •m converges

weakly to a Gaussian measure.

Theorem 1. Consider 0 (t) to be a function of t C (O ,t0]. Then

— 8) converges in distribution to a Gaussian process Y as a~~ •,

where EY(t) • 0 and cov(Y(s),Y (t)) • 02/P
0

(max(s ,t ) )  s,t e (0,t0].

Proof. The total time on test at time t is given by

N~(t)

• } U~ + (R
~

Nm(t ) )tø
i—l

First , we prov, that th. random element 1~ • m ’~(9~~e N )  in D(0 ,t0] con-

verges in distribution to a Gaussian process Z with EZ( t) • 0 and

f cov(Z(s),Z(t)) • o2 F0(min(s ,t)) as a -
~~ — , where s,t (0 ,t0]. (See

Mll ingsley (1968) fo r notatIon.)

Let ~ s~ ~2 
•
~~~

• 

~ k ~~ where It is an arbitrary positive integer.

Also, let X1~
X2I~~~~

Xm be the hypothetical data from the exponential

distribution with mean 0. Note that b.cause of the time truncation t
0 
not

every X can be observed . Define

~~~~ (xi
_ (s

J
+o))I(s~~1sx~< s~~ 

+ 
~~~~~~~~~~~~~~~~ ‘~~-~~~~~

‘

when. 
~~~ 

denotes the indicator function , i — l ,...,n , and j • l ,...,k.

It can be shown that ~~~~~~~~~~~~ ~~~ — var(W~~~) • 0 2F0 (s1), a var (W1~~)

• 02(F0(.~
)_ P

0(
~~ 

i~~’ 
j il l, and J(W~

t)W~~ ~) • O , It 1’. By the Central

Limit Thor , th. k-dimensional random vector a~
1 I converges in
i—I

distribution to a multivaniate normal random vector with mean Q and
covariance matr ix ~ as a~~ , vtisr . w1 — ~~~~~~~ and $
— diag(a~ ,o~ ,...,a~),’denoting matrix transpose.

_ _  --~~~~~~~~~~~~~~~~~
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Then a~~ ~~ converges in distribution to a multtvariate normal random vector

with mean 9 and covaniance matrix 
~l 

— (aL~
)kKk as m~ — . where

ajj — {e

: F0
(e~) , j ~ I

0 P8(s1) , j  � i, i .j •

Let O � r 1
< n < r

2~~t0. Then~~~(r) 
~~~~~ 

~~ 1~~i 
and

1—1

Ca (t 2) — 

~~~~~ 
— a ½ 

I~~~j . 
where — (X~ — (r*e))I[r �X <r] + (n—n 1)

_ (r
~
rl)I(X (r) and — (Xi— (r2 + °~~‘t ~X c  ) + (r 2

_r ) _ (r 2~
r)I [ X < r) .

It is straightforward to show that Er~ — — 0, Er1+~ — 0,

var — 02(exp(—r1/e)—exp(-r/e)), var4~ — 02(exp(—r/O)—sxp(—r2/0)) ,  and

• (r—r 1) 8 (sxp(—r/8)—.xp (—r2/8)). Now,

— a 2E(( I )2( I • )2)
i—i i—i

• a~~E(r~+~
) + m ’(m—1)E( r~~~

]

— m4(r—r1)2e2(exp(—r/o)—exp(—r 2/O)) + m4(a—l)var t
1~ 
va$2 -

� a 1 
(r2—i

1
) 2.2 (exp (—r1/O ) —.exp (—r 21e)) + m~~ (a—i) (exp (—r 1/0)

—exp(—r2/0)) 2 e14

� 0
4f (r 2—r1)2/02 + (exp(—r1/O)-sxp (—r2/e))

2)

� 04((r 2/0—r1/O) + (sxp(—r1/O)—exp(—r 2/0))) 2

— 04((F8(r2)+r2/O) —

Thus, by Theorem 13.6 of Billingsley (1968), the random element

converges in d’itribution to a Gaussian process Z with EZ(t) • 0 and

cov(Z(s),Z(t)) s 82P
e
(ain(s

~
t)) as a~~ .. Since the random element aN ’ converges

in probability to a constant f unction 
~‘~e 

tn D(0.to
], by Theorem 4 4  and 

_ _ _ _
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Corollary 1 of Theorem 5.1 of Billingaley (1968), the random element

~~~~~ 
— U

~
C0a 

— 0) converges in distribution to a Gaussian process “~

with EYCt) — 0  and cov(YCs), Y ( t ) )  — 0 2/F0 (max(s ,t )) as a ’  •. I/I

Theorem 1 will be used to obtain the approximate power function

f o r the test of (1.1) for large a in the next section , to calculate

the average sampling time in Section 4, and to obtain interval estimates

of 0 after testing in Section 5. First , a standard kind of time

transformation for the process 2 in the proof of Theorem 1 is needed .

This is stated in L e a  1 for future reference.

L~~~a 1. Let 2 be a Gaussian process with EZ(t) — C and cov(Z(s),Z( t))

— 0
2
F9

(min(a ,t ) ) ,  a, t ~ (O,t9
). Also, let p(s) • Z(F~~(s))/O, where

is the inverse function of F0, s c Co,F0(t0)]. Then p (s) is a standardized

Wiener process.

3. ASYMPTOTIC APPROXIMATION OF POWER FUNCTION

Since N~(O) • 0, by our convention in Section 1. O~(O) is defined

to be — . Also, F~(O) — 0. Therefore, we define 2(0) — b, where b is an

arbitrary positive number which can be determined from the specified error

• probabilities a and 8 as a result of Theorem 2.

Theorem 2. When a is large,

P0(accept H0
) • P

0
(T> t0)

(b— c ’(0)F9 (t0)~ (2c i( O)b ~ / c’(O)P0(t0)+b \
‘I ~~~~~ 2 ¼ i

~ e(F0(t0~~ / ~ 
0 / I, O(F0(t0)) /

- 5-- - - -
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where c’(O) — m½ (c — ~) and B is the distribution function of the standard

norma l distribution.

Proof. By Theorem 1, we have f or the Gaussian process 2 of Leema 1,

P0(accept H0
) — P

0
(a½(0 Ct) — B) > c’(O), for all t € (O,t0

))

!I%~~~ 1e ~~~~~~ 
> c ’(B) ,  for all t ~ [O,t0)) which by L~~~a 1 becomes

p
0 

(~~ (~~ > c’(O) , for all 8 € (O,F0(t0
)))

— P0
(p (s) > c’(O)s/O , for all a e [O,P0(t0

)])

b—c’(O)s
P9

(p(s) < , for all s e [0,F
0(t0
)])

f  b—c’(0)P0(t0)~ (2c ’(O)b\ ( c’CO)F0(t0)+b\
½ J ~

exp I 2
~ ~~~~~~~ 

/ ‘ ~ / ~ e (F0(t0)) /

where the last equality is obtained from an application of the results on

page 348 of Shepp (1966). III

Therefore, in order to determine the constants Ca and b required for

testing (1.1) with the specified error probabilities a and B, we must solve

the following two nonlinear equations:

fb_ c’(0 0)P0 (t0)\ / b+c’(O~ )F0 Ct 0) \
½ — exp(2c’(00)b/ 002) 

. • ~
.. 0

~ O0(F0 (t~)) / a \ 00(F8 (t0))

(3.1)

• /b—c ’(0 )F (t )~ / b+c’(01)F Ct )\
i a l B 1 O~~ 2’ a B

~~~
0
~~

~ J — exp (2 c’(01)b/01 ) ‘ 8 1 — ½ —

~ 
e1(F0 Ct 0))~ / 

a 
~ o1(F9 Ct0)) /

1 1

A solution to (3.1) may be easily found by numerical analysis techniques.

An example is given in Section 6.
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4. ASYMPTOTIC APPROXIMATION OF DISTRIBUTION OF T

The approximate distribution of the time T for large a may be readily

- obtained from the results of Sections 2 and 3. The distribution function

of T is given in Theorem 3.

Theorem 3. When a is large,

(2c ’(O)b\ f—c ’(O)F (t)—b/e \ 1 -
-

• G8(t) — P (T�t) — a 
½ 

J+exp ( a 1.1 a 
½0 ‘t (F0(t)) / \ 0 / ~ (P

0(t)) /
• w h e n e t > O .

Proof. From Theorem 1, Lesuna 2, and equation (17.1) of Shepp (1966),

- i
- - P0(T

� t) — 1 —  P9
(T>t) — 1  — P0

(/ (Om
(u)_0)>C

~
(0) for all uE[O ,t])

1 — 
~e~

p
0~u~ 

> c’(e), for all UE t0,t])

— 1 — P0( 
~~~~~~~~~~~~ > c,(0), for all v E [O ,F0

(t)])

— 1 —  P0(p(v)< 
“
,

~ 

, for all v~~E0,F9(t)))

/b—c ’(e)P (t)~ f2c’(e)b~ f c’(e)F (t)+b~
- — 1 — a 0 I—exi~L a 

2 1 ’  
a 

~ ¼ ~~~ •

\ e(F0
(t)) / ~ 0 / 0(Fe(t)) /

Note that T may not be a proper random variable, i.e. P0
(T — •) can

be positive. When c’(O)’O, Ge(t) is very similar to 
the inverse

r - - Gaussian distribution function (Shuster (1968)).

The average sampling time (AST) for our sequential testing procedure

is given by

a .- - -  

-

_ _- ~~ •-- ..—~~‘.——— ~~~~~~~~~~~ — .5~~~~ 5.,. —



~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---~-•~-

~~~

8

to
• (4.1) tdG~ (t) + t0(1 

—

The integral in (4.1) cannot be obtained in closed form , but is easily

integrated computationally by the Gaussian or other quadratures.

5. THE INTERVAL ESTIMATION OF B AFTER TESTING

• For the completeness of this paper, we utilize Siegmund ’s (1978) method

of obtaining a confidence interval of a parameter $ for an arbitrary parent

distribution after a test of hypothesis of 0 has been established . First ,

points on the stopping boundary are ordered in a counterclockwise direction.

Then a lower (1 — y ) confidence bound for 0 is the smallest value of 0

which gives probability at least y to the event that the test terminates at

a boundary point at least as large as that actually observed in the ordering.

An upper confidence bound is defined similarly.

For our situation, an interval estimate of 0 when II
~ 
is accepted is much

more desirable in practice than when H1 Is accepted . When H~ is accepted , fur the r

development and testing will be necessary so that it is more important to

reach a rejection decision as soon as possible than to give an accurate

estimate of 0. The following theorem gives a (1 — 2y) confidence interval

for 0 after H0 
is accepted. The proof of this theorem is straightforward.

Theorem 4. When H0 is accepted, 
let the observed value of Oa

(t0) be d.

Then a lower (1 — r) confidence bound is given by

(5.1) 0(d) — m t  (0: P0
(T � t

0 
and 0(t0) � d)�y) ;

and an upper (1 — y) confidence bound is given by

-~ -~~~~~~~~~~~~~~ = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ .- - - - .~~~~~~~~~~~~ --

,
- -~~ J
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(5.2) ~(d) — sup (0: (P0(T< t 0) + P0 (T �t 0 and 0 (t0)< J�YL

Finding the upper and lover bounds for 0 involves computing the three

probabilities in (5.1) and (5.2). Since P0(T�t 0 and e~
(to

)�d)

• P0(0 (t0
)�d) — P0(Tt 0 and 0 (t0)�d) and P0(T�t 0 and

— P
8 (0 U0) < d) — P0

(T< t
0
) + P0(T< t0 and 0(t0) �d),the only quantity

which we are unable to compute for large a from results in the previous

sections is P0(Tt 0 and Oa(t0)�d)• The following corollary to previous

-
~~~~ results gives an approximate expression for this probability.

Corollary 1. When a is large,

to fc ’(e)F 0 (t )—d ’ (8)F 0 (t 0)+b\
and 0 (t0 )�d) * J •~ 

m a 
J g(t )dt ,a o ~ 0( F U )—F (t) )~ /

where d~(8)_ln
½(d_8),g(t) — dG(t) C is defined in Theorem 3, and b is def ined

in Section 2.

Proof. Write P0(0 (t0)�d and T-< t0) — P0(0 (t0)�dIT t0)P (T<t )

• CE P8(e (t0)�dIT ,T-c t0)) P0(T -c t0)

— f 0 P0(0 (t0) �d I T  — t, t c t 0)g(t)dt.

Now, letting a — F0(t), and — P
0
(t
0
), ve obtain

Op ( s )
Pe(e (to) �d I T — t , t <  t

0
) P9 ( ~~

0 �d’(9 )  Op( s) sc ’(O))

— P0 (p(s0) � s 0~~ (0),0 p(s)  — c ’(O) s/ O )

— P0 (p( s0—s) 2 (s0d~ (O)-.c,~(0)s)/~ p ( O) .r b/e)

.5~~~~~~~~~~~Ti~~~ _~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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— P0(p(s0—s) 
� (s0d’(O)—c ’(U)s—b)/O I p (°) = 0)

/b—s d’(O)+c’(O)s, Om  a
— B ~ _ _ _

where we have used the stationary increments property of p(s). I/ I

The integral in Corollary 1 can be easily computed by numerical

integration procedures in practice, thus giving approximate values for

(5.1) and (5.2) for large a.

6. AN EXAMPLE

In this section, we give a simple example of computing the initial

value Cm~
b
~ 
and the AST for illustration purposes. We let a — 100 ,

0o — 1.5, ~~ — 1.0, a — .05, and 8 • .1. To attain given values

a — P (reject 11o~ 
and B — P0 (reject }I~

), the pair of nonlinear equations
0 1

in (3.1) are solved. If to is preassigned to 2.079 such that F0 ( t 0) .75,

then C
m — 

1.2469 and b • 1.2436. We also report the test based on 8 (t*)

for a fixed length of time t* (Spurn er and Wel (1979)) for comparison

purposes. For the same a and B values, t* — 1.0942. Table 1 gives the

average sampling times (AST) of our sequential testing procedure for several

0 values, computed by the 24—point Gaussian quadrature formulas. Under

the alternative hypothesis, the AST’s are considerably smaller than t*

for the fixed time test. Under H0, the AST is larger than t~ . However,

this is actually an advantage because we would like to have an accurate

estimate of 0 when H~ is accepted.

—5-
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Table 1. THE AVERAGE SAMPLING TIME

to — 2.079 , t~ — 1.094

0 0.2 0.4 0.6 0.8 1.0 1.3

AST 0.017 0.060 0.129 0.269 0.779 2.009

7. REMARK S

In prac tice, we perform the sequential procedure proposed in this

article by computing Oa(t) periodically with small increments of t ime. By

doing this our teat can be treated as an approximation to repeated significance

teats with fixed length of tiae.

When t
0 

is not predeterai~ned by the experimenter, a value of t0 can

be obtained which is optimal in some sense. For example, t0 may be chosen

to minimize the AST when 0—0~ subject to constraints (3.1).

If our purpose were to obtain a decision aa soon as possible without

regard to estimation, then other sequential tests based on 0m could be

constructed to meet this requirement.

- -  
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rule; Confidence interval ; Average sampling time.
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- Let a items be put on test at the outset, and suppose an item is not
‘replaced upon failure . Assume an exponential failure distribution
F0( t )  • 1 — exp(—t/O). A time truncated sequential procedure for
testing H0: 0 versus Ntm: &~~~j~ is developed. This procedure allows a
quick rejection �Y H6 when 1%I is tI~ue, but provides an accurate interval
estimate of 0 when II~ is accepted after the test ha. been established .
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